Adaptive Iterative Thresholding Algorithms for Magnetoenceophalography (MEG)
نویسندگان
چکیده
We provide fast and accurate adaptive algorithms for the spatial resolution of current densities in MEG. We assume that vector components of the current densities possess a sparse expansion with respect to preassigned wavelets. Additionally, different components may also exhibit common sparsity patterns. We model MEG as an inverse problem with joint sparsity constraints, promoting coupling of non-vanishing components. We show how to compute solutions of the MEG linear inverse problem by iterative thresholded Landweber schemes. At each iteration an adaptive application of a compressed matrix associated to the Biot-Savart operator in wavelet coordinates is introduced. The resulting adaptive scheme is fast, robust, and significantly outperforms the classical Tikhonov regularization in resolving sparse current densities. Numerical examples are included. AMS subject classification: 65J22, 65K10, 65T60, 52A41, 49M30, 68U10
منابع مشابه
Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients
Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...
متن کاملThe convergence guarantee of the iterative thresholding algorithm with suboptimal feedbacks for large systems
Thresholding based iterative algorithms have the trade-off between effectiveness and optimality. Some are effective but involving sub-matrix inversions in every step of iterations. For systems of large sizes, such algorithms can be computationally expensive and/or prohibitive. The null space tuning algorithm with hard thresholding and feedbacks (NST+HT+FB) has a mean to expedite its procedure b...
متن کاملAdaptive Thresholding in Marine RADARs
In order to detect targets upon sea surface or near it, marine radars should be capable of distinguishing signals of target reflections from the sea clutter. Our proposed method in this paper relates to detection of dissimilar marine targets in an inhomogeneous environment with clutter and non-stationary noises, and is based on adaptive thresholding determination methods. The variance and t...
متن کاملGeneralized Iterative Thresholding for Sparsity-Aware Online Volterra System Identification
The present paper explores the link between thresholding, one of the key enablers in sparsity-promoting algorithms, and Volterra system identification in the context of time-adaptive or online learning. A connection is established between the recently developed generalized thresholding operator and optimization theory via the concept of proximal mappings which are associated with non-convex pen...
متن کاملMinimization of Transformed L1 Penalty: Closed Form Representation and Iterative Thresholding Algorithms
The transformed l1 penalty (TL1) functions are a one parameter family of bilinear transformations composed with the absolute value function. When acting on vectors, the TL1 penalty interpolates l0 and l1 similar to lp norm (p ∈ (0, 1)). In our companion paper, we showed that TL1 is a robust sparsity promoting penalty in compressed sensing (CS) problems for a broad range of incoherent and cohere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007